
NASA Contractor Report 201649

ICASE Report No. 97-8

ANNIVERSARY

MINIMIZING OVERHEAD IN PARALLEL
ALGORITHMS THROUGH OVERLAPPING
COMMUNICATION/COMPUTATION

Arun K. Somani
Allen M. Sansano

NASA Contract No. NAS1-19480
February 1997

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

VKGqV&uW m^^

Minimizing Overhead in Parallel Algorithms Through
Overlapping Communication/Computation

Arun K. Somani*and Allen M. Sansano
{arun, allen}@shasta.ee.washington.edu
Department of Electrical Engineering
University of Washington, Box 352500

Seattle, WA 98195-2500

Abstract

One of the major goals in the design of parallel processing machines and algorithms is
to reduce the effects of the overhead introduced when a given problem is parallelized. A
key contributor to overhead is communication time. Many architectures try to reduce this
overhead by minimizing the actual time for communication, including latency and bandwidth.
Another approach is to hide communication by overlapping it with computation. This paper
presents the Proteus parallel computer and its effective use of communication hiding through
overlapping communication/computation techniques. These techniques are easily extended for
use in compiler support of parallel programming. We also address the complexity or rather
simplicity, in achieving complete exchange on the Proteus Machine.

"This research in part was supported by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-19480 while this author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.

1 Introduction

1.1 Background

This paper presents Proteus [12], a parallel architecture designed to take advantage of overlapping
communication/computation. Overlapping communication/computation minimizes the effect of
communication overhead introduced when a problem is parallelized. The Proteus project was
started in 1990 and working hardware was available in early 1993. A 32 (46 including control and
spare) processor machine is being used in current work. One novel architectural feature of Proteus
is the use of a dedicated processor for communication control. Other architectures utilizing a com-
munication processor and overlapping communication/computation do exist. In the commercial
world the Intel Paragon [4] was introduced at about the same time with a dual processor node
with one processor acting as a communication processor. Recent node releases for the Paragon
include nodes with up to three processors with one of them acting as a communication processor.
The MANNA [2] project at GMD in Germany also utilizes 1 communication processor + 1 com-
putation processor per node. The PIM/c [14] machine from Japan has an 8 processor cluster with
one communication processor. The FLASH Project [7] [6] at Stanford utilizes the MAGIC com-
munication processor to handle the communication tasks for a given node in the system. Proteus
was the first among these machines to utilize multiple processors per communication processor.
The result is a node that can take advantage of overlapping communication/computation at lower
costs since the communication hardware is shared among processors on a node.

1.2 Contributions

When a problem is parallelized, the time for inter-processor communication, not found in the
serial version, is added to the processors' execution time. This communication time is considered
overhead. Communication of data between processors is initiated by a kernel call to invoke a
communication handling routine. Then, the data needs to be transmitted. Finally, the commu-
nication needs to be completed with the sending and receiving data being resolved. Much time is
wasted in the management and transmission of the data. Allocating communication resources and
attaining a connection contribute to communication latency. Inefficient protocols and hardware
are possible causes of longer latency. Also, the communication link can be slow, or worse, not
available for a given amount of time due to the link and/or I/O buffer contention. These ineffi-
ciencies can lead to the communicating processors laying idle waiting for communication resources
and data.

Many techniques such as low contention interconnection networks, low latency communica-
tion protocols, fast data links, and efficient problem partitioning and scheduling to minimize
communications are employed to reduce communication overhead. These attempts are good in
general, but are lacking in the following way. For communication overhead to approach zero,
the communication time would have to approach zero as well. This is not a practical or real-
izable goal. Overlapping communication/computation is an additional technique used to break
the serial communication/computation pattern. This method attempts to hide communication
overhead through the use of special hardware. This hardware handles the bulk of communication
administration and frees the processor to concentrate on computation tasks during the time it
would usually be servicing communication functions. Proteus provides the necessary hardware to
overlap communication and computation.

1

This paper is organized in the following fashion. Section 2 describes the Proteus system
architecture and discusses uniques features of Proteus. Section 3 discusses the communication
protocol of Proteus. Section 4 outlines the idea of overlapping communication/computation and
demonstrates its usefulness through some examples on the Proteus Parallel Computer. Section 5
presents a mechanism to achieve a complete exchange on this machine and compares its perfor-
mance with other commercial machines such as the Intel Paragon, IBM SP2, and Meiko CS-2. In
Section 6, we present our conclusions.

2 Proteus System Architecture

The Proteus Parallel Computer [12] is a Multiple Instruction, Multiple Data (MIMD) machine
optimized for large granularity tasks such as machine vision and image processing. This hier-
archical system employs shared memory Clusters of processors. The Cluster itself is a powerful
shared memory multiprocessor. The advantages of a shared memory model as well as the lim-
itations of scalability in a shared memory architecture are well documented. Proteus scales by
connecting Clusters together through a crossbar network. For further scalability, Groups of Clus-
ters can be connected together through some interconnection such as an Enhanced Hypercube
[3]. Within this hybrid machine a unique communication system was developed based upon both
shared memory and message passing principles. This system allows efficient utilization of shared
Cluster components such as memory, communication subsystems, and Cluster Controllers while
avoiding high contention for these resources. The power of the clustered node is balanced with
the richness of the interconnection network. A diagram of the system is shown in Figure 1.

7/
Spare I/O
Connections

VMEI/F*,_„»- -^

.--""/'l CLUSTER

ontröne i' PP PP PP

Shared
Memory

PP

Comml/'

Optical Connection to Crossbar"

Figure 1: The Proteus System Architecture

Interesting features Proteus include:

• Daughterboard design for the processing element to facilitate upgrading and changing of
processors.

• Large one megabyte caches with software controlled, hardware assisted coherency mecha-
nisms at the Cluster level.

• Cache Write Generate caching mode [16].

• Shared communication hardware between processors on a cluster.

• Hardware support for overlapping communication and computation.

• Circuit-switched interconnection with hierarchical control.

• Roving fault tolerance supported by extra hardware.

• Fault tolerant synchronization techniques [5].

2.1 The Pixel Processor

The processing element, or Pixel Processor (PP), used in Proteus is an Intel i860 [17] micropro-
cessor running at 40 MHz. The processor is supported by a one megabyte, unified, direct-mapped
L2 cache with a custom cache controller/bus interface at the next level of hierarchy, a shared
memory bus. This is the largest amount of cache available with any machine even today. The
purpose of the L2 cache is to 1) provide faster memory access and 2) ease the contention on the
shared memory bus. The L2 cache will act in various cache accessing modes or as a local memory
through an addressing mechanism. The access type is decoded by the cache controller from the
upper nibble, 4 bits, of the 32 bit address. This addressing nibble can also specify whether the
PP internal cache is also enabled.

Of special interest is the cache generate [16] mode, which has been implemented for research
purposes. Cache generate is similar to the write allocate scheme except the line being written into
is validated by cache without reading from the main memory. This assumes that the corresponding
processor will write into each byte of the cache line before using it for further computation. Hence
the reading of a line is not necessary as all data in the line are overwritten. It has been shown that
in some cases, cache generate is very beneficial. However, care must be taken to avoid destructive
overwriting of data in the cache.

Flushing and invalidation mechanisms are provided for in hardware to handle cache coherency
issues. A software command loads a control register in the cache controller signaling it to flush
and/or invalidate specified cache lines. Therefore, the programmer (compiler) is responsible for
maintaining cache consistency. While this places the burden on the programmer, these techniques
reduce costs and complexity related to hardware maintained consistency [8].

In order for the PP to communicate with the Cluster Controller (CC), an interrupt system as
well as dedicated mailboxes have been set up. In order to interrupt a CC, the PP first fills in some
header type information in a pre-defined shared memory location. Then it sets the appropriate
bit in a control register which triggers an interrupt to the CC. The PP is then free to continue
on with computations while the CC services the interrupt. A flagging system is set up so that a
PP does not corrupt the pre-defined shared memory location on the next interrupt if the previous
interrupt has yet to be completed.

Also useful for the PP are some shared memory mailboxes. These are shared memory locations
that are dedicated to certain functions between the CC and the PP. For instance, an end-of-
transmission (EOT) counter box is set up to keep track of the current EOT count. The EOT is a
system clock used to define communication cycles. The CC increments this counter box and the
PP reads it for such things as time stamping messages. Other mailboxes are used for the PP to

give information to the CC. For instance, send requests are posted to shared memory mailboxes
and are read by the CC. More details on these mechanisms are given in the next section.

2.2 The Cluster

The main components of each cluster are the PPs, a Cluster Controller (CC), and a communication
interface.

The Cluster Controller: The CC is primarily responsible for managing all the hardware
resources within that cluster. It is an Intel i960 microprocessor. The CC is attached to the shared
memory bus and also has it's own local bus. One megabyte of local RAM is provided on the local
bus. The CC's tasks include:

• Scheduling tasks on the PEs.

• Managing the shared and dual port (DP) memory resources.

•

•

•

•

•

Managing cluster communication through the optical links.

Handling all interrupts to the Cluster.

Acting as PP's interface to the outside world setting up I/O like operations from the shared
memory to the VME bus through the Group Controller and Group Host.

Loading PP code and bringing the PPs out of reset.

Interfacing with the GCI to coordinate crossbar communication.

• Handling almost all communication functions so the PP does not have to.

The Communication Interface: Each cluster is equipped with an input and an output optical,
serial link. Each is set to run at 250 megabits/second, although they can be set up to run at as
much as 1000 megabits/sec. With 4/5 encoding and 40 bits transferred for every 32 bits of data,
the deliverable bandwidth is 20 megabytes/sec. These links are used for data movement to/from
the cluster from/to another cluster or an external source. Effective bandwidth is actually about
16 megabytes/sec after overhead is accounted for. The latency of a connection set up depends on
when a message arrives with respect to a cycle boundary as explained in Section 3.

The Communication Interface consists of a Dual Port Memory (DP), a DMA controller, and
an input/output FIFO buffer to input and output optical serial links. This subsystem is shared
by all the PPs on a cluster. This avoids the cost of replicated communication hardware for each
PP. Allocation of DP memory is controlled by the CC. The CC also controls the DMA controller
through control registers, telling it what to transfer to/from the DP to the serial links. The DP
can handle any combination of the following: reads from the serial link input FIFO buffer, writes
to the serial link output FIFO buffer, and reads/writes from the shared memory bus. The FIFO
buffers allow for speed matching between the DP accesses and the serial links data transfer rates.

2.3 The Group

At the next level of hierarchy, above clusters and PPs, are groups of clusters connected together
though optical links and a crossbar. The clusters are also connected via the VME bus for control
transfers. Separate groups can be connected with any topology as long as the required number
of links per node including group I/O links does not exceed seven. That is because there are
seven free links from the crossbar in a group. Each group consists of a Group Controller (GC), 8
Clusters, a spare Cluster for fault tolerance and a Generalized Communications Interface (GCI).
The GC, a single board processor system equipped with a VME bus interface and an Ethernet
interface, coordinates activities between the Group and the Group Host.

The Generalized Communication Interface: Connections on the crossbar are arbitrated
by a Generalized Communication Interface (GCI) which receives all connection requests from the
CCs and determines what to set up on a given communication cycle.

Controlling the GCI is an Intel i960. This processor was chosen to maintain compatibility
between the Cluster and the GCI controllers. This made it easier to design and program the
VME interface. The GCI controller's primary job is to arbitrate cluster communication requests
and set up those connections on the Crossbar.

Connection request and grant information is passed to/from the GCI via mailbox registers on
the VME interface chips. The GCI Controller then sets up those connections on the crossbar and
grants transmissions once the connection is set.

The GCI controller also does the job of scheduling incoming images to clusters for processing.
These incoming images may be placed in four frame buffers pending scheduling to the Clusters.
These buffers are intended for data rate matching between incoming data sets waiting to be
processed and the actual processing rate of the Group. Each buffer contains 256 kilobytes of DP
memory and a connection to the crossbar. The frame buffer subsystems are configured exactly
like the cluster communication interface except that they have less DP memory.

The crossbar consists of 20x20 connections. Nine of the connections are for use by the nine
clusters. Four of the connections are for use by the frame buffers. The remaining seven are used
for group interconnect and external sources.

The Group Controller: The Group Controller (GC) is a Sun Sparestation VME controller
card. It's main purpose is to coordinate actions over the VME bus and to provide the group
with an interface to the Group Host through an ethernet connection. Operating system and all
executable files are transferred by the GC from file systems to the clusters via the VME bus. All
requests for group-to-group connections are passed through the GC from the GCI via the VME
bus and are then forwarded to the Group Host via ethernet for arbitration.

3 The Proteus Communication Techniques

3.1 Proteus Communication Functions

Proteus uses a hybrid approach to communications, since the clusters are shared memory and
the interconnections between clusters are message passing. We call the shared memory com-
munication intra-cluster communications and the message passing communication inter-cluster

Communications. Figure 2 shows the difference in the paths taken for these two type of commu-
nications. While the Cluster has a shared bus, an API to the programmer can give the illusion of
a message passing system while retaining the speed of a shared bus. The result is a more uniform
programming style.

1 pp 1 1 pp 1
IN?- 1 -

1 pp 1 1 pH
'1s 1 1 1 ' I

Shared
Memory

I Dual Port I
I

| X-Bar I
Shared
Memory

I
I Dual Port I

1 I
1 l>" 1 1

1 pp 1 1 pp 1 1 ~l
ntra-Cluster C

I «-I

Figure 2: Proteus Communication Paths

Intra-Cluster Communications: Intra-cluster communication between PEs happens through
shared memory. A simple way of looking at the intra-cluster communications is the classical cache
coherency problem. The Proteus design maintains cache coherency through hardware-based,
software-controlled, flush-and-sync mechanisms. Part of the PP subsystem design is a mechanism
that when activated will selectively flush and/or invalidate certain locations in the cache. This
mechanism is activated by a PP programming the control registers with the action to be taken
(flush, invalidate, flush and invalidate).

The job of coherency is the responsibility of the programmer (or compiler). With larger grain
tasks and messages, cache coherency maintained by software commands is a relatively low burden
to the programmer (compiler) [15]. With more irregular fine grain applications this task can
become increasingly difficult. However, Proteus is optimized for larger grain applications.

For an intra-cluster send, the sending PP just needs to flush the potentially cached data to an
area of shared memory to make it available to another PP on the cluster. Once data is flushed
by PP x it needs to let PP y know it is now available to it. By flushing the data and then setting
a flag, PP x is free to continue with its computations. Care must be taken in making sure that
the sending PP does not redefine the data at the location in shared memory before the receiving
PP has received it. This would break multiple assignment rules. The data is now "owned" by
the receiving processor and should not be modified by any other processor. A solution to this
problem is buffering in which the PP makes its own copy of the data which it can modify as it
pleases. Buffering needs to be used only if the same memory area is required by a processor for
some other purpose. Alternate methods of consistency can be used but Proteus is programmed
using rules based on a single owner per data block.

When PP y wants some data from another PP, it needs to check the flag to make sure the data
has been placed there. If the checking of the flag is a blocking operation, then it is the same as a
synchronization. This action is just a synchronization point. If the receiving PP checks in to see
before the data has been sent, then it is blocked until the sending PP sets the check-in flag. If the
sending PP has already checked in at the time the receiving PP checks in then the receiving PP
can complete its receive and continue on with its computations. The receiving PP also needs to

6

know the address of where the data is. This address is passed back by the synchronization routine.
The sending PP places this address in a predefined location as part of its check-in operation.

Inter-Cluster Communications: Inter-cluster communication is more involved than the intra-
cluster, flush-and-sync communication. The communication is done on a synchronous, circuit-
switched basis and occurs on a defined cycle basis. The CC acts as a controller for all interaction
between a cluster and the crossbar network. A PP has to post a communication send request to
the CC which then handles all control while the PP is free to continue with work.

The choice of synchronous circuit switching fits well with the original intent of the machine
of macro-pipelining and permutation routing that is employed in volume visualization and other
image processing algorithms. Research is being done to implement an asynchronous protocol on
Proteus. The hardware is already in place and the protocol is being defined and refined.

The inter-cluster communication send mechanism is somewhat similar to the intra-cluster
communication mechanism. In this case, the PP needs to place data in the DP memory area.
Remember, the DP is directly addressable by the PP. This is much like the flushing part of
the intra-cluster send. The network transmission part can be thought of as the synchroniza-
tion between the sending cluster and the receiving cluster. Once this action is completed, the
communication has occurred.

PPs communicate send requests to the CC through shared memory "mailboxes." When a PP
wants to send data, it posts a send request in shared memory. This procedure fills a mailbox
with communication information such as a destination processor, source address, and a commu-
nication ID tag. Once this action is complete, the PP is finished with the tasks it needs to do to
communicate. Once again, to maintain multiple assignment rules, the data in DP should not be
modified once it is assigned to be communicated. In fact, once a send is requested the sending
PP releases ownership of that data block. This is very similar to the case for intra-cluster sends.
Once the CC reads the request it handles all further action necessary to complete the send such
as forwarding the request to the GCI and setting up the actual communication. This takes the
burden of communication control off the PPs. Most of the time necessary to send data occurs
during the period in which the CC is performing its actions. During this time the PP is free to
do computations. This is exactly the concept of overlapping communication/computations.

For an inter-cluster receive, a PP interrupts the CC informing it that the PP needs data. An
interrupt mechanism is used in order to allow the CC to respond almost immediately to the PP
request. If a mailbox was used the CC could potentially have to wait until the next cycle to begin
servicing the request. If the data was already in the DP, the delay is eliminated by the interrupt
mechanism because the CC can immediately release the data to the PP. The data then sits in the
destination DP until a receive for it has been issued. If a receive has been requested before the
data has been received, the requesting PP has to wait until the receive occurs at which time the
data is then released to the PP.

Uniform Communication API: To simplify programming, the API is fashioned so that com-
munication calls that are made for local communications will invoke the flush-and-sync mecha-
nisms without the programmer explicitly maintaining the flush-and-sync. The send or receive
routines can be fashioned such that only one library function needs to be called for any com-
munication (inter or intra) and the library function determines the kind of communication it is
and takes the necessary actions. For ease of use, the determination of which type of communi-
cation, intra-cluster or inter-cluster, should be invisible to the programmer (compiler). In this

way coherency is maintained by message-passing coherency rules in the same fashion that inter-
cluster coherency is maintained. The task of determining data movements has to be done for
inter-cluster communications already so we maintain that having to determine these movements
for intra-cluster communication adds no significant burden to the programmer (compiler).

The burden of determining what kind of communication is occurring (inter or intra) and
maintaining that type of communication is taken off the programmer. In this way a single uni-
form communication API is presented to the programmer. This uniformity of communication
commands is not always the most efficient method since an extra layer has to be added to intra-
cluster communications to make it appear as message-passing in nature. Currently, this uniform
API is not implemented. However, the structure is present in existing code to easily add this
functionality to the library support.

3.2 Inter-Cluster Communication Specifics

While communication on a cluster is controlled between two PPs or by the CC in a uniform API
case, communication between clusters within the Group is controlled by the GCI.

The movement of data among clusters is synchronized and each transmission is to be completed
within a specified time which is defined before run time. When the term communication cycle
is mentioned, it is only for inter-cluster communications since intra-cluster communications are
asynchronous through shared memory and do not use a defined cycle. The control and data paths
for inter-cluster communication are separate. Control is handled over the VME backplane while
data is transferred via the crossbar during each cycle.

The Communication Cycle: To understand more about how communication occurs on a cycle
basis, one needs to understand the actions taken during a cycle. At every synchronization cycle
the CC reads transmission and reception grants from the VME register mailboxes that the GCI
set up in the last cycle and sets up the communications accordingly. It then reads the requests
that PPs have posted and forwards one of them to the GCI. Only one request is forwarded per
cycle. The CC and GCI then reach a synchronization point and the CC is through with its
preliminary work. The GCI control receives the connection requests from the cluster controllers
during this cycle and arbitrates connection for the next cycle. The GCI then writes the VME
register mailboxes with grant information for the next cycle. Any remaining requests that could
not be serviced are queued by the GCI. The actions taken by the CC and GCI during a cycle are
shown in Figure 3.

Four signals are used in defining a cycle. The baseline signal for a cycle is the End-Of-
Transmission (EOT) signal. All other signals are defined in relation to this signal. Other signals
include a signal to switch the crossbar (SW) and signals for the start of reception (RX) and
the start of transmission (TX). Overhead is added by the synchronization time for the TX/RX
circuitry for the optical links. The optical links we use have a rather large synchronization time
resulting in a total overhead (latency) per cycle of 60 microseconds. With 64 kilobyte data
packets, the effective data rate works out to about 15.98 megabyte/sec per link with a cycle time
of 4.1 milliseconds. This represents a 71 percent efficiency of the peak data transfer rate of 20
megabyte/sec.

The 4.1 millisecond cycle time is necessary for those times that the communication resources
are most busy. The exchange example in the next chapter is one of those times. In this case,

Set up Communication
Check for communication fault
Read PP communication request
Allocate other resources
Write request and status to GCI
Release info to GCI

GCI waits for info from CC
Read requests
Check for communication faults
Arbitrate links
Write grants and status for next cycle
Load crossbar

Overhead

Time

Figure 3: A Breakdown of the Proteus Communication Cycle

during any one cycle, a send and a receive are occurring and accesses are being made by more
than 2 processors to the DP on the shared memory bus. This causes some contention for the DP
resources resulting in a longer cycle time. It is suspected that a design error in the DP memory
controller allowed this contention to occur. If designed correctly, it should take 3.125 milliseconds
to transfer 64 kilobytes of data plus the 60 microseconds plus a small amount of overhead to
complete the cycle. Sample tests show that the cycle time could be dropped to 3.325 milliseconds
if the DMA had complete priority over the shared memory accesses to the DP. In these tests the
DMA was set up to do a send and a receive on a cycle that the PEs were not accessing the DP
from the shared memory bus. Cycle timing is shown in Figure 4.

EOT RXTX

A AA
EOT

A
-s SOusccs

3325-4100 usecs

60 usecs (64Kbyte message)

Figure 4: The Proteus Communication Cycle Timing

Request Arbitration: Priority among the PPs for forwarding requests to the GCI is deter-
mined by the CC on a round robin basis. For instance if the priority was (PP1, PP2, PP3, PP4)
and PP1 had a send request, the next cycle would have priorities (PP2, PP3, PP4, PP1) for post-
ing send requests. Requests are placed into the queue on a round robin approach similar to the
CC-PP arbitration scheme. The GCI arbitrates from a request pool on a first-request/first-serve
basis provided no conflicts exist. If a conflict exists for a given request, it stays in the queue and
gets arbitrated on the next cycle.

Optimal Dual Port Performance: The method of involving the DP in the inter-cluster
communications can impact efficiency in terms of shared memory access. This shared memory
access can result in contention for the shared memory bus thereby degrading performance. The
following code fragments show how to optimize DP access to minimize total memory accesses.
"A", "B", and "C" are arrays of elements with size equal to the data packet and reside in shared
memory. "DP" is the DP packet residing in DP memory. All operations occur for all elements in
the arrays. Note that in the efficient case no unnecessary data movements are performed.

Efficient DP Use For Receive

A = B + DP {A <- B + DP}

free.DP(DP) {Free this DP area}

Inefficient DP Use For Receive

C = DP {C <- DP}

free_DP(DP) {Free this DP area}

A = B + C {A <- B + C}

It is easy to see the inefficient case resulting in extra copying. This concept of working to/from
the DP area can be applied to the send routine to minimize data copies. Let us say a processor
has to do work-1 then send the results. If the final target area in DP is incorporated into work-1,
then the data will not have to be copied to DP. These mechanisms are very similar to the receive

mechanisms.

Communication Fault Tolerance: Fault tolerance is built into the communication system.
Control signal errors and transmission errors are detected. An error in control signals leads to
a mis-timed cycle. Transmission errors are detected by using a 4/5 bit data encoding scheme.
Any link errors resulting in an erroneous receive packet are also detected. Any detected error is
relayed to the GCI and a retransmission is scheduled.

3.3 Inter-Cluster Communications Flow Charts

Thus far, all the parts necessary to do an inter-cluster communication have been presented. The
list of actions taken in a inter-cluster send are listed below. The flow chart for a send is shown in

Figure 5.

1. A PP needs to send.

2. Send request is queued in shared memory mailbox registers. PP is free to continue on with
computations.

10

3. The CC reads the request from a PPs' queue if it has top priority . If another PP has a
higher priority it's request is serviced and the other request stays queued.

4. CC posts the request to the GCI.

5. GCI reads the request from the CC mailbox registers.

6. GCI places request in an arbitration queue.

7. If a grant is determined, the send request is set up. If not, the request stays in the arbitration
queue.

8. Send occurs.

Figure 5: Send Flowchart

The minimum latency occurs when 1, 2, 3, 4, 5, 6, and 7 happen on the same cycle and 8
happens on the very next cycle. Higher latency occurs when the request does not have priority
and gets queued at steps 3 and 7. These two steps increase the latency by a multiple of the cycle
time.

The list of actions taken in a inter-cluster receive are listed below and the flow chart for a
receive is shown in Figure 6.

1. PP issues a receive.

2. Receive request gets queued.

3. If the corresponding send has occurred then resolve it and release data to PP. If not, the
request stays in the queue.

4. Receive occurs.

The minimum latency occurs when 1, 2, 3, and 4 happen on the same cycle, that is, the
corresponding send has already occurred. Higher latency occurs when the send has not occurred.
The latency will then increase by some multiple of the cycle time.

11

Figure 6: Receive Flowchart

4 Overlapping Communication/Computation Techniques

4.1 Ideal Communication/Computation Overlap

In order to overlap communications with computations, the PPs would be able to do work while
sends are occurring and before receives are completed. Sends should be initiated as soon as
possible. The time after a send should be filled in with tasks independent of the sent data to
maintain data consistency. Receives for the PP, should be posted as late as possible, with tasks
independent of the receive scheduled before it. By scheduling a receive as late as possible, the
actual data can take place without affecting the task as long as possible, thus keeping the receiving
processor from waiting too long. This order of events is shown in figure 7. If enough work can be
filled in before a receive and after a send so as to keep the processors fully utilized, then optimal
overlapping communication/computation has been achieved.

lSEND
task independent of send

pp;

•\
re, v ̂̂

-^COMM

CC"

PPi \ w

Task independent of receive J RECEIVE

Figure 7: Proteus Communication Scheduling

Overlapping communication/computation addresses the primary goal of keeping processor
utilization high at all times. One way of looking at overlapping communication/computation is
the following way. A block of work is defined as a task. For a given program a processor has many
such tasks. Each task is assumed to have some communication requirements associated with it.
A task that has no communication associated with it has communication requirements with zero
time. For a task that has multiple communications associated with it the sum of the time is the
communication requirements for that task. Ideal communication/computation overlap occurs in
the following situation. While working on a given task i, the incoming communications for task
i + 1 are occurring. The outgoing communications from task i - 1 can also be scheduled to occur
during this time. If the sum of the incoming communications for task i + 1 and the outgoing
communications for z — 1 is less than the computation time for task i, then the communication
time is effectively hidden. This scenario is depicted in Figure 8(b). Figure 8(a) shows a diagram

12

of no communication/computation overlap. This would be a case where a processor had to serve
all of it's communication and could only do one thing at a time. This is also the case when a
processor cannot fill in the time during a send or receive with computations. If the communication
time is more than the computation time during task i, then incomplete overlap occurs. Figure 8(c)
shows incomplete communication/computation overlap in which there is more communication for
a given task than computation. This problem is said to be communication bound.

^J^JIJ^
Eä< POMP tmmä COMM

Figure 8: Communication scheduling style: a) serial communication/computation, b) complete

overlap of communication by computation, c) incomplete overlap or communication bound.

The goal is to partition the program in such a way that the task time can hide the com-
munication time. A related goal is to schedule the communication efficiently in a manner that
overlapping communication/computation can occur. This chapter shows even the simplest tasks
can result in an efficient overlapping.

4.2 The Exchange Example

The result of the CC handling the communication functions is that the PP is free to concentrate
on computation tasks. For instance, a PP can post a send request, then continue to work while
the CC handles the chores of setting up the transaction. However, for a cluster on Proteus, a
single PP is unable to fully utilize the communication links and the CC resources by itself. Hence
a cluster of four processors is used to utilize the capacity in full.

Communication Resource Utilization: The best way to demonstrate an efficient order of
events and efficient communication resource utilization of Proteus is through an Exchange exam-
ple. In this example, a single PPi on one cluster exchanges a 64 kilobyte data packet with a single
PPj on another cluster. At any given time, two data packets are bouncing back and forth be-
tween the two PPs. When the packet arrives, some work (a simple check-and-modify operations)
is performed, and the packet is sent back to the other PP. Figure 9 depicts what happens in the
exchange example. In cycle q, both CCi and CCj set up to send and receive a packet. In cycle
q+1, the packets have been received and are released to the PPs. The PPs work on the packet
through the cycle q+2 and posts a send. In cycle q+3, the CCs read the PPs posted send and
requests a connection to the GCI. The GCI arbitrates and schedules a transmission in cycle q+4.
The cycle then repeats with the other packets similarly.

Altering the test to include 4 PPs on each cluster and exchanging data packets with 4 PPs
on another cluster, results in an order of events similar to the single PP case except after an
initial clash for resources the PPs will step into order and utilize the cycles not used by other
PPs. The link is utilized 100% of the time with a transmit and receive occurring in every cycle.

13

OQNQH

cq
REQTX/B KQlWQ IHIlWJ

WORS WORK WORK WORK

H1 h+i Ui UJ I ^
eichange wih one PP per Ouster

TWnWWMTWTWTXIRj m

H 1 | q+1 | q+2 [^-31 q+i

(b) Simple ext

Figure 9: Exchange Example a) one PP per cluster b) 4 pps per cluster (shading is work of one

PP

14

This scenario is shown in Figure 9. In intensive applications, resources not used by one PP are
free to be used by the other PPs. Therefore, a major goal of efficiently sharing resources such as
communication hardware and memory has been met without adding overhead due to contention.
So far only the utilization of the communication resources of Proteus has been highlighted. Real
life programs have the computation being more involved, so the example is restructured to take
advantage of overlapping communication/computation features.

Implementing the Overlapping Communication/Computation: A more realistic exam-
ple would entail the work portion taking many more cycles than the simple check and modify
operation. An assumption is made that real life calculation would be at least twice that of the
simple check-and-modify, or about 4 cycles as shown in Figure 10(a) for a single PP case. This
modified exchange example still has the problem of the PPs laying idle waiting for the next set
of data.

A change is now made in the scheduling of communications so that the PP transmits its data
after finishing half of the data packet of size B. This modified schedule of events is shown in Figure
10(b). Again a single PP is shown. As in the simple exchange model, when scaled to four, the
PPs will step into place and now both PPs and the CCs are fully utilized. This is shown in 10(c).

By splitting the data and sending B/2 sized packets, the PP is now able to maintain full
efficiency. From the previous examples we see that for the Proteus machine, with its 4 PPs
per cluster, a task needs to be at least 4 cycles long for each communication (send and receive)
scheduled in order that the PP maintains full computation utilization. If the task were any shorter
the communication links would be fully utilized while the PPs would lay idle waiting for data. In
this case, we have a communications-bounded problem. If the task were any longer, we still get
100% computation utilization with the communication time hidden. We see in the next section
that this is a very realistic goal.

Dividing the working data size in half is effective only up to a certain extent. Each division
causes the creation of another packet to be sent which has more overhead associated with it. Once
complete overlap is achieved, additional splitting results in no benefit. In fact, oversplitting can
cause many more data packets which can overload the communication system resources.

Conclusions from the Exchange Example: In the exchange example the efficient utilization
of all communication resources is demonstrated. As the number of PPs in the exchange was
increased, the communication resource utilization was maintained and no bottleneck was created.
Through the use of splitting techniques, the utilization of the PP system was increased while still
avoiding a bottleneck in the communication system. The techniques of partitioning tasks and
scheduling communications learned in this section can be applied to real applications. In the next
section, we demonstrate the use of these techniques in a Two Dimensional FFT Algorithm.

4.3 The FFT Example

The application we use to evaluate the impact of overlapping communication/computation is the
2-Dimensional FFT. The algorithm we use, based upon an algorithm found in [9], can be split
into five main parts:

1. The second dimension bit reversal - line swaps.

15

PPi

CCi REQ I
WORI WORK WORE WORE

PPj

CCj

REQ TX/RS

REQ HI

WORE WORK WORE WORE

REQ TX/RX

Cycle q

PPi

CCi

q+1 q+2 q+3 q+4
i

(a) Single PP wijh realistic workload

H m w ■w W w w w w
RCTX

m w

(b) Single PP wi|h modified scheduling

III w; Ü w w w w w 11 11 II jj
w w 11 1! w w w w 11 11 HI 1

B III II 1 w w w w ■ 1 1 W

1 m w w w w w w (B u 1
11 ■ SI It RC RC RC RC

B B SI 11 u n TX TX

PP4

PP3

PP2

PPI

CCi

(c) For PPs withimodified scheduling

Figure 10: Exchange example with more realistic workload a) single PP, b) single PPs with

modified scheduling, (c) four PPs with modified scheduling

16

2. The distribution of data.

3. The first dimension FFT and initial intra-grain combines for second dimension.

4. The inter-grain second dimension FFT.

5. The collection of the data.

We implemented this algorithm on the Proteus machine. We used the 2 dimensional FFT "C"
code in [10] as a starting point and parallelized it while maintaining the spirit of the code. The
greatest emphasis was on optimizing the communication patterns. On Proteus a "master" node
was used to perform the bit-reversal and distribution. Then n nodes are used to do the FFT in
both dimensions. Finally, each node sends its processed data back to the master node where it is
reconstructed into continuous memory space. Our goal was to overlap as much computation and
communication as possible.

In order to achieve overlapping we decided to partition the data into coarse grains, setting up
a pipeline of sorts with computation and communication. Parts 1 and 2 of our algorithm can be
overlapped in the following way. Bit reversed grains of data are formulated from the complete
data set. After one is formulated, it can be sent off to a processor to begin the FFT computations.
While it is being sent off, the next grain can be formulated. We see from the exchange example
that the read and write operation involved in formulating a bit-reversed grain can indeed be
overlapped with communication on Proteus. In fact since the master processor is just reading,
writing, and sending we observe that the communication channel is utilized 100% with grains
being sent to various processors every cycle.

Parts 2 and 3 of our algorithm can be overlapped in the following way. As each processor
receives the data, it is able to process the first dimension FFT and the first few butterfly stages
of the second dimension FFT before and while it is receiving its next grain. When the processor
finishes it's computation on the grain, the next grain is already there on which to begin processing.

Parts 3 and 4 of our algorithm can be overlapped in the following way. As grains are finished
with their initial dimension 2 processing (butterflies within the grain) they can be sent off to
their destination processors. When the processors finish the initial dimension 2 processing, the
incoming grains that need to be combined with other grains should already have arrived.

Overlapping within part 4 occurs in the following way. Once a processor receives all of its
grains and processes as many second dimension FFT butterfly stages as it can, a processor then
needs to perform the remaining stages of the butterfly combine operation with other processors.
This means each processor needs to send and receive data from other processors. Here we can take
advantage of the overlapping computation/communication features of the two target machines.
A processor can do the combination of a received grain while receiving the next grain for the next
computation. In this fashion the processors complete the remaining stages of the 2D FFT.

Parts 4 and 5 can be overlapped in the following way. When completed, the data is collected
by the master processor and reconstructed into continuous memory space. As the grains are
completed with all the processing, they can be sent back to the master processor for reconstruction.
This can occur while other grains are being processed. This stage is much like the first stage except
the data is moving the other way.

Timing Example from the 2D FFT: The previous section shows where savings can be made
to reduce communication overhead. In this section we analyze one of those cases to further demon-
strate the effects of communication/computation overlapping. This analysis is of the overlapping

17

that occurs within part 4 of our algorithm. The routing permutations in the second dimension
FFT were chosen to reduce communications. Even with overlapping communication and compu-
tation, the communication time could have an effect on the overall time if the communication time
was much bigger than the computation time. So the goal is to reduce communication as much as
possible and also overlap the remaining communication with computation. Upon first examining
the communication patterns of a butterfly stage for two processors with two grains each, we see
that the two processors could send each other their grains, then do the combination to produce
two grains each. See Figure 11(a) for details. Upon closer examination, if a processor has two
grains, it is seen that the first processor could send its upper grain to the second processor and
the second processor could send its lower grain to the first processor. Each processor could then
combine the incoming grain with the grain it kept to produce two grains each. See Figure 11(b)
for details. This results in less overall communication between processors. A byproduct of this
rearrangement is that the multiplies that occur as part of the FFT computation are split amongst
the processor involved resulting in a load balanced approach. Furthermore, each processor could
split its data to utilize overlapping communication and computation as shown in Figure 11(c).
This results in more overall communication between processors but the data size communicated
per transaction is halved and the communication is effectively hidden.

"g>g :;v£ »£S-r:

Figure 11: a) Tradition butterflies, b) Optimized butterflies, c) Optimized butterflies with over-

lapping communication/computation.

This technique reduced the second dimension FFT communication in half. Another result
of this reduced communication is a load balancing. In the FFT, "upper" grains do not need to
be multiplied by a phase factor, while "lower" grains do. In the non-reduced computation case
the upper node would do half as much work as the lower node. With the reduced computation
each node will do both an upper combination without phase factor multiplication and a lower
combination with phase factor multiplication. In a 32 processor scenario on Proteus with 64
kilobyte grains we see that the processing (combining one resident grain with one incoming grain
to produce 2 grains) time to be about 16 ms with grains able to come to a processor every
16.4 ms (4.1ms per grain with the other 3 processors on board also needing to receive a grain
= 4 processors * 4.1 milliseconds = 16.4 ms). In the non-reduced communication scheme the
processing (2 grains producing 1 grain) would take 8 ms with grains coming every 16.4ms. We
see in this implementation, a processor would spend much of the time waiting for incoming grains
since the communication time dominates. These numbers support the design decision to supply

18

four processors on a cluster board. Any more processors would result in the communication needs
not being met. Any fewer and the communication resources would lay idle much of the time.

Bandwidth Requirements: In a paper by Sivasubramaniam et al. [11], the authors discuss
bandwidth requirements for various parallel applications. Using the SPASM simulator, they
were able to characterize the bandwidth necessary to reach certain levels of overhead associated
with communication time. They also used processor clock rate as a function to their bandwidth
requirements. They computed bandwidth requirements for five applications for clock speeds of
33, 100, and 300 Mhz for levels of overhead of 50%, 30%, and 10%. However, this paper fails to
account for overlapping communication/computation possibilities.

The authors suggest that to meet a 10% restriction on overhead (90% efficiency), the band-
width requirements for an FFT problem would be characterized by 0.01p036 + 16.37 megabytes
per second for a 33 Mhz processor. This corresponds to an effective bandwidth of 16.87 for a 32
processor system. A 30% restriction in communication overhead is presented as 7.83 megabytes
per second in this work. For this implementation to approach 0% communication overhead, re-
quires a substantial increase in effective bandwidth. This particular implementation of the FFT
uses no overlapping communication/computation and considers the core processing and not the
distribution time. This 16.87 is used as a baseline bandwidth figure in a comparison with the
Proteus implementation though the bandwidth requirements would be raised slightly for the 40
MHz i860. Examining the 2D FFT implementation on Proteus, and only considering the core
FFT computations, the 2D interprocessor butterfly stages are the only communication that take
place. Proteus already has 16 megabyte per second communication links. By overlapping the
communication and computation we are able to completely hide the communications. So the
communication overhead in the Proteus implementation is able to approach 0% without the need
for more communication bandwidth.

Another algorithm presented in [11], CHOLESKY, needs a bandwidth increase from 16.02 to
84.12 in order to reduce communication overhead from 30% to 10% for a 32 processor system
with a 33 MHz node. The IS (Integer Sort) example with the same system configuration needs an
increase in bandwidth 78.61 to 211.45. So in reducing communication overhead in this approach,
the bandwidth requirements need to be increased greatly. Such drastic increases in bandwidth re-
quirements needed to decrease the effects of overhead may be unnecessary if the use of overlapping
communication/computation is explored for these applications.

Conclusions from the Two Dimensional FFT: From the results that we have presented,
we see the tradeoff between the reduction in communication overhead due to large granularity
and the effects of overlapping computation/communication. By using the concept of overlapping
computation/communication we are able to save on the overall time of the algorithm. Instead of a
processor having to do communication then computation, we reduce the overall time by ensuring
that the time a processor spends communicating (overhead) is minimized through overlapping.

5 Complete Exchange in the Proteus System

In a complete exchange among k processors, numbered 0 to k — 1, each processor i has a unique
message for every other processor j, 0 < i, j < k. There are three main algorithms used to

19

achieve complete exchange among processors in hypercube- and mesh-like machines: standard,
direct, and multi-phase.

In standard exchange algorithm for a hypercube [18], data meant for multiple destinations
are sent to a neighboring node by each node. The receiving nodes shuffle the data around and
send them to their neighbors in another dimension ensuring that the data move towards their
destinations. In a hypercube, it takes log k transmissions of messages of size m * k/2 each where
m is the size of data to be sent from one node to each of the other nodes. Each node has to shuffle
the blocks of data of size m* k. In the direct algorithm, each node sends k -1 individual messages
of size m to fc - 1 other nodes [19] using a straightforward algorithm. It turns out that for large
messages, direct algorithm outperforms the standard exchange. This is because manipulation of
messages on the intermediate nodes is more expensive than letting the messages go untouched.
In the multi-phase algorithm [20], a complete exchange is obtained by doing two or more partial
exchanges. Each partial exchange is a complete exchange in a subcube. Similar algorithms have
been implemented on other machines such as SP2, Paragon, and CS-2 [20] and have been shown
to be very effective.

The time to finish a complete exchange on the three machines, Paragon, SP-2, and CS-2, using
multi-phase algorithms are reported in [20] and are as shown in Table 1. In the table, we have
picked up the best times possible. It should be noted that some of these times do not scale well
depending on the multi-phase strategy. In some cases, the strategy may not be able to handle
larger message affecting the times adversely. Experiments on SP2 and CS-2 up to 64 processors.
It should be noted that individual message times do not scale well when multiple messages are
transmitted at the same time due to contention in the network.

Table 1: Complete Exchange Times on Paragon, SP-2, and CS-2 [20]

No. ofProc Message Size Paragon SP2 CS-2

Single Message time m bytes 75+0.011 usec 70+0.043 usec 105+0.025 usec

32 Proc 2K bytes 7 milliseconds 7 milliseconds 11 milliseconds

64 Proc 2K bytes 12 milliseconds 13 milliseconds 28 milliseconds

128 Proc 2K bytes 40 milliseconds - -

256 Proc 2K bytes 88 milliseconds - -

Since each cluster in Proteus system has four processors and each group has eight clusters, a 32
processor configuration is a single node with full crossbar connection between the eight clusters.
To derive any larger configuration, we have several choices. One can start with as many full
groups and a partial group and then interconnect them using the seven links available at each
group for interconnection. A few example structures are shown in Figure 12 below.

We assume that no two groups are connected using more than two links (there is no restriction
as long as no more than seven links are required to connect a group in the structure). In the
following we will also arbitrarily assume that the interconnection structures are hypercube-like
which was our original intention at the time of design.

Recall that each cluster can transmit and receive at most one message in each time slot. Thus

20

0
a) One Grc

&—-0
&—Ö

(a) One Group

(b) Two Groui
&—-0

(d) Eight Groups

Figure 12: Some configurations of the Proteus system

eight clusters in each group can potentially transmit and receive up to eight messages in each
time slot. However, only a few of them can be sent out at a time as the number of external links
to and from each group are limited to seven and all of them may not be connected. The bisection
bandwidth of the structure used will govern the amount of time it takes to achieve a complete
exchange.

For a complete exchange on the Proteus, we use a strategy where messages from the four
processors on a cluster are accumulated as a single message. This can be easily done, since the
processors share memory. Thus, each cluster will have a unique message for every other cluster
in the system. These messages are then transmitted to the destination clusters. The process is
repeated overlapping communication and assembly of messages. Thus each cluster prepares one
message, receives and un-assembles one message, and transmits one message in most of the cycles.
Since each group can only transmit only a limited number of messages in a cycle, there will be
some idle cycles on all clusters during the exchange.

Number of Messages. Each cluster in a group has some inter-group messages and some intra-
group messages. Intra-group messages can be transmitted in a conflict free manner, as long as it
is a permutation. Inter-group messages need to be scheduled. If a machine configuration has k
groups (8* k clusters), then each cluster needs to send 8* (k - 1) inter-group message and 7 intra-
group messages. Since there are 8 clusters in a group, the number of inter-group messages from
each group is 8*8* (k- 1). The number of intra-group messages from all clusters together within
each group is 8 * 7. Moreover, a group can at most transmit as many inter-group messages as
the number of outgoing links or the number of clusters in the group. Since in most configuration
the first one will be the case, we find a schedule that can keep outgoing links busy as much as
possible.

Schedule. If k = 1, then it will take exactly 7 cycles to finish communication within a group.
For k > 1, it is the inter-group traffic requirement that will govern the total time. The intra-group
communication can be completely overlapped with the inter-group communication for k > 1. The
structure in Figure 12 is a generalized folding cube. For a 8 group configuration as shown in

21

Figure 12(d), the following schedule in Table 2 will be able to keep all nodes busy in all cycles in
a regular hypercube. The routing is based on the e-cube routing algorithm [21]. In general a k
node configuration will take k — 1 cycles if each node transmits exactly one message in each cycle.
This is the direct algorithm for a complete exchange.

Table 2: Permutation Routing Schedule on A Hypercube

Number Mask From —» To Pairs

0 7 (0, 7), (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (7, 0)

1 6 (0, 6), (1, 7), (2, 4), (3, 5), (4, 2), (5, 3), (6, 0), (7, 1)

2 5 (0, 5), (1, 4), (2, 7), (3, 6), (4, 1), (5, 0), (6, 3), (7, 2)

3 4 (0, 4), (1, 5), (2, 6), (3, 7), (4, 0), (5, 1), (6, 2), (7, 3)

4 3 (0, 3), (1, 2), (2, 1), (3, 0), (4, 7), (5, 6), (6, 5), (7, 4)

5 2 (0, 2), (1, 3), (2, 0), (3, 1), (4, 6), (5, 7), (6, 4), (7, 5)

6 1 (0, 1), (1, 0), (2, 3), (3, 2), (4, 5), (5, 4), (6, 7), (7, 6)

7 0 (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)

Optimization for the Proteus System. In most implementations of hypercube-based ar-
chitectures each node transmits only one message at a time, e-cube routing works very well and
keeps maximum number of links busy during the realization of a permutation. A close look at
these permutations shows that links used by permutation pairs 6 and 1, 5 and 2, and 4 and 3,
are mutually exclusive. Thus if it was possible to transmit more than one message from a node,
we could merge these pairs of permutations to realize a better utilization of links. In the Proteus
system, we can transmit more than one messages from each group (but from different clusters
within the group), we can embed a pair of permutations while still using e-cube routing. Thus,
it takes only k/2 cycles to realize all the permutations. In fact, while performing permutation 0
in Table 2, the clusters could also perform permutation 7 with mask 0 realizing an intra-cluster
transfer. A similar approach will work for lower and higher dimension structures.

Thus far we have used only a single bidirectional link in the hypercube structure of the Proteus.
If we have I links in each dimension(as shown in Figure 12 for / = 2), we can further combine the
sets of permutations being realized in two cycles in one cycle as they will use parallel links and
there are enough sources (clusters) available to transmit messages within a group. In the case of
the Proteus, I must not exceed 4. This will reduce the number of cycles from k/2 to k/2l for one
unique message from one group to every other group.

Embedding Complete Exchange. We need to transmit 8 messages from each cluster to 8
clusters in the other group and there are 8 clusters to transmit in each group. Therefore, we need
to transmit 64 unique messages from each group to every other group. The number of cycles it
will take to achieve a complete exchange in a A; groups system with / links is given by 64 *k/(2* I)
for k > 1. For k = 1, there is no inter-group messages and intra-group permutations can be

22

achieved in 7 cycles. In general if there are c clusters per group, then the time taken is given by
c2 * k/(2 * I) for k groups and / links in each dimension system for c> 21. For k = 1, it takes c - 1
cycles.

Results. Now we compute and compare the time it takes to achieve a complete exchange on
various machines. As reported earlier, in Proteus, to transmit a 64K message, theoretically it
should take 3.2 milliseconds + 0.1 milliseconds to set up the connection for each permutation
cycle. However, due to hardware speed mismatches, it takes 4.0 milliseconds + 0.1 milliseconds
(a total of 4.1 milliseconds). For a message size of 32 K this time will be 2.0 milliseconds + 0.1
milliseconds = 2.1 milliseconds as it is all governed by the hardware speed once the message is in
the network. Recall that there is no contention in the network. Similar computation gives a total
time of 1.1 milliseconds for 16 K and 0.6 milliseconds for a 8 K message size. If an individual
processor generates a message of size m bytes, then a cluster will generate a message of Am bytes.
For m = 2K from each processor to every other processor, we have 8K byte messages from each
cluster. The actual time it takes with overlapping communication and computation is given in
Table 3. Notice that unlike standard exchange or multi-phase exchanges, the messages here can
be computed and prepared as the algorithm progresses as is the case for the direct algorithm.
The times in Table 1 must be compared with the times in column corresponding to the message
size 2K in Table 3.

Table 3: Complete Exchange Times (in milliseconds) on Proteus, c = 8

Proc k / = 1 1 = 2

2K 4K 8K 16K 2K 4K 8K 16K

32 1 4.2 7.7 14.7 28.7 4.2 7.7 14.7 28.7

64 2 38.4 70.4 134.4 262.4 19.2 35.2 67.2 131.2

128 4 76.8 140.8 268.8 524.8 38.4 70.4 134.2 262.4

256 8 153.6 281.6 537.6 1049.6 76.8 140.8 268.8 524.8

Several things are noteworthy here. First, the message sizes (from each node) are scalable.
This is generally not true for most machines which are designed with small messages in mind.
Second, the time it takes to deliver all messages is also scalable. For k > 1, the time simply
multiplies by a factor of two when k is multiplied by a factor of two. This is not the case with
the times measured on Paragon, SP2, and CS-2. Third, for larger configurations, Proteus takes a
much shorter time than the Paragon, SP2, or CS-2. It should also be noticed that the link speeds
are the smallest on the Proteus machine among all the machines compared here. Thus, it is not
the raw speed, but the organization that matters. Also, recall that the algorithms here will scale
for / < c/2.

Further Optimization. We could use the multi-phase approach of Bokhari to further optimize
the complete exchange on the Proteus. In this case, first we accumulate all messages within a
group that are to be sent to other groups on different clusters and then transmit the messages. This

23

allows us to transfer fewer messages of larger granularity. Thus the set up time can be minimized.
However, one should be careful with the overhead in collecting messages. Our suspicion is that,
like in direct vs standard exchange algorithm, message overhead may wash out the set up time
gain. We, therefore, do not recommend it.

6 Conclusions

This paper has explored the use of overlapping communications/computations and their imple-
mentation on the Proteus parallel computer. Specifically, a detailed description of the hardware
that Proteus provides to accomplish overlapping communication/computation has been presented
in section 2. Dedicated hardware in the form of a communications controller takes the burden of
communications control away from the working processors, thus freeing the processor to concen-
trate on computations. On Proteus, this hardware is shared by the four processors in a cluster,
thereby reducing overall costs. Efficient utilization of this communication processor is maintained
without overloading it with communication functions. We outlined the software work done on Pro-
teus to support overlapping communication/computations in Section 3. Specifically, we addressed
the issues of library support and required actions during a communication cycle.

Ideally, communication and computation should be scheduled in such a way that the compu-
tation time completely overlaps the communication time. The exchange example demonstrates
the ease in scheduling overlapping communications/computations while keeping communication
utilization from saturating. The processors do not have to idle while waiting for communica-
tions to occur since they are continuously kept busy. This example shows a method of split-
ting a task to break the serial communication/computation pattern. This example also shows
that even for a relatively simple task coupled with many communications, overlapping commu-
nications/computations are able to maintain efficient processor and communication subsystem
utilization. The results of this example strengthen the choice of sharing the communication sub-
system among four processors in Proteus.

A major issue addressed in this paper is that overlapping communication/computation is
an efficient method to reduce communication overhead. Other attempts call for communication
connections with higher effective bandwidth. The major drawback in these attempts is that
the reducing overhead is not a linear function with respect to bandwidth increase. A rather
large increase in an effective bandwidth is necessary to decrease the overhead to an acceptable
level. Overlapping communication/computation allows for a reduction in the overhead without
unacceptably large increases in the effective bandwidth. Using the two dimensional FFT example,
a program is dissected showing overlapping techniques in use. This splitting method is applied
in order to achieve complete overlapping of the communication and computation. For the second
dimension butterflies that require communication, the communication overhead approaches zero
without the need for additional bandwidth. Also, a reduction in overall execution time is achieved.

We also addressed the issue of achieving a complete exchange in the Proteus machine. We have
shown that even with much smaller bandwidth per processor (approximately 4Mbyte/sec per PP
or 16Mbyte/sec per cluster in contrast to 175Mbyte/sec in the Paragon) links, the Proteus machine
can achieve a complete exchange in compararble or shorter time depending on the message size.
Moreover these times are scalable with the machine size.

24

References

[I] R. C. Agarwal, F. G. Gustavoson, and M. Zubair, "An Efficient Parallel Algorithm for 3-D FFT
NAS Parallel Benchmark," in Proc. of Scalable High-Performance Computing Conference,
Knoxville, TN, USA, 1994, pp. 129-133.

[2] U. Brueing, W. Giloi, and W. Schroeder-Preikschat, "Latency hiding in Message-passing Ar-
chitectures," in the Proceedings of the Eighth International Parallel Processing Symposium,
Cancun, Mexico, pp. 704-9, April 1994.

[3] S. B. Choi and A. K. Somani, "Rearrangeable Circuit-Switched Hypercube Architecture for
Routing Permutations," Journal of Parallel and Distributed Computing, Vol. 19, 1993, pp.
125-133.

[4] W. Groscup, "The Intel Paragon XP/S supercomputer," in the Proceedings of the Fifth
ECMWF Workshop on the Use of Parallel Processors in Meteorology, Parallel Supercom-
puting in Atmospheric Science, Reading, UK, Nov. 1992, pp. 173-87.

[5] M. Harrington and A. K. Somani, "Synchronizing Hypercube Networks in the Presence of
Faults," IEEE Transactions on Computers, Oct. 1994.

[6] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta, "Integration of Message Passing and
Shared Memory in the Stanford FLASH Multiprocessor," in the Proceedings of ASPLOS VI,
San Jose, CA, pp. 38-50, Oct. 1994.

[7] J. Kuskin et al.,"The Stanford FLASH Multiprocessor," in International Symposium on Com-
puter Architecture, pp. 302-313, 1994.

[8] D. Lenoski et al.,"The Stanford DASH Multiprocessor," Computer, Vol. 25, pp. 63-79, Mar.
1992.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes in
C, Second Edition," Cambridge University Press, New York, NY, 1992.

[10] A. Sansano and A. K. Somani, "The Communication System of the Proteus Parallel Pro-
cessor," in the Proceedings of the International Conference on High Performance Computing,
New Delhi, India, 1995, pp. 635-640.

[II] A. Sivasubrmaniam et al., "On Characterizing Bandwidth Requirements of Parallel Algo-
rithms," in the Proceedings of Sigmetrics 95/Performance 95, Ottawa, Canada, pp. 198-207,
1996.

[12] A. K. Somani, et al., "Proteus system architecture and organization," in Proceedings of the
Fifth International Parallel Processing Symp., Anaheim, CA, April 30 - May 2, 1991, pp.
276-284.

[13] H. S. Stone, "High Performance Computer Architecture," Reading, MA, Addison Wesley,
1987.

[14] T. Tarui et al., "Evaluation of the Cluster Structure on the PIM/C Parallel Inference Ma-
chine," in the Proceedings of the 1994 International Conference on Parallel Processing, Vol.
II, pp. 309-313, 1994.

25

[15] J. Torrellas and D. Koufaty, "Comparing the Performance of the DASH and Cedar Multipro-
cessors for Scientific Applications," in the Proceedings of the 1994 International Conference
on Parallel Processing, Vol II, pp. 304-308, 1994.

[16] C. M. Wittenbrink, A. K. Somani, and C. -H. Chen, "Cache write generate for parallel image
processing on shared memory architectures," in IEEE Transactions on Image Processing, Vol.
5, No. 7, July 1996, pp. 1204-1208.

[17] i860 64-Bit Microprocessor Hardware Reference Manual, Mt. Prospect, IL, Intel Corp., 1990.

[18] S. L. Johnson and C. -T. Ho, "Matrix Transposition on Boolean n-Cube Configured Ensemble
Architectures," SIAM J. Matrix Analysis Application, Vol. 9, No. 3, July 1988, pp. 419-454.

[19] R. Take, "A Routing Method for the All-to-AU Burst on Hypercube Network," Proc. 35th
National Conf. Info. Proc. Soc, Japan, 1987, pp. 151-152 (in Japanese).

[20] S. H. Bokhari, "Multiphase Complete Exchange on Paragon, SP2, and CS2," in IEEE Parallel
and Distributed Technology, Fall 1996, pp. 45-59.

[21] S. L. Johnson and C. -T. Ho, "Optimum broadcasting and personalized communication in
hypercubes," IEEE Trans. Comput., Vol. 38, Sept. 1989, pp. 1249-1268.

26

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONVf(Leave blank) 2. REPORT DATE

February 1997
3. REPORT TYPE AND DATES COVERED

Contractor Report

TITLE AND SUBTITLE

Minimizing overhead in parallel algorithms through overlapping
communication/computation

6. AUTHOR(S)

Arun K. Somani
Allen M. Sansano

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 403, NASA Langley Research Center
Hampton, VA 23681-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 97-8

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201649
ICASE Report No. 97-8

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushneil
Final Report
Submitted to IEEE Transactions on Parallel and Distributed Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
One of the major goals in the design of parallel processing machines and algorithms is to reduce the effects of
the overhead introduced when a given problem is parallelized. A key contributor to overhead is communication
time. Many architectures try to reduce this overhead by minimizing the actual time for communication, including
latency and bandwidth. Another approach is to hide communication by overlapping it with computation. This
paper presents the Proteus parallel computer and its effective use of communication hiding through overlapping
communication/computation techniques. These techniques are easily extended for use in compiler support of parallel
programming. We also address the complexity or rather simplicity, in achieving complete exchange on the Proteus
Machine.

14. SUBJECT TERMS
Proteus Parallel Computer System; Communication Overhead; Overlapping Computing
and Communication; Partitioning and Scheduling for High-Performance; Complete
Exchange

15. NUMBER OF PAGES

28
16. PRICE CODE

 A03
17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19 SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

